

Enabling citizen-centric EHR data sharing

FRANCESCO TORELLI
Engineering Ingegneria Informatica SpA

InteropEHRate

• Instrument: Horizon 2020

Type: Research and Innovation action

• Grant Agreement Number: 826106

• Start date: 1st January 2019

End date: 30th September 2022

16 Partners

- Engineering Ingegneria Informatica S.p.A. (Italy)
- A7 Software (Belgium)
- EHTEL European Health Telematics Association (Belgium)
- DTCA Hygeia Diagnostic and Therapeutic Centre of Athens (Greece)
- University of Trento (Italy)
- University of Vienna (Austria)
- EFN European Federation of Nurses Associations (Belgium)

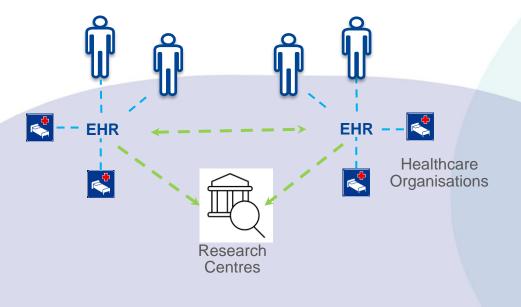
(Germany)

- FTGM Toscana Gabriele Monasterio per la Ricerca Medica e di Sanità Pubblica (Italy)
- OHU de Liège Centre Hospitalier Universitaire de Liège (Belgium)
- UBITECH Limited (Cyprus)

GOAL

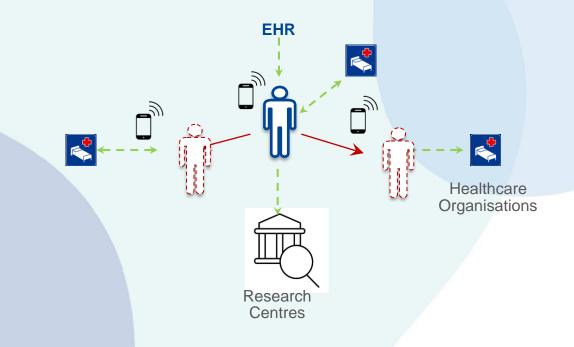
To support the cross-(any-)border exchange of personal health data

between citizens and healthcare or research organisations.

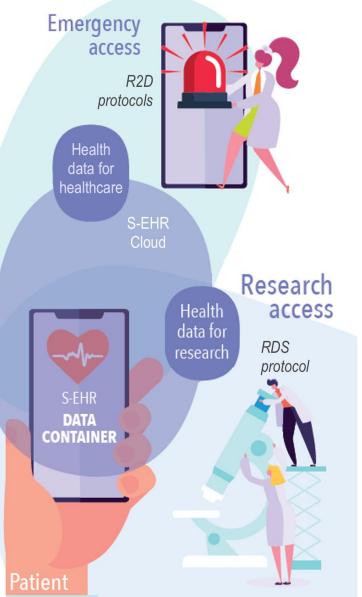


VISION

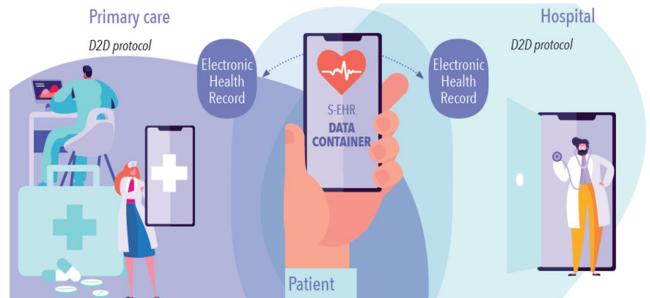
Citizens will be **peers** of healthcare and research organisations


Healthcare centred data exchange

- Health data stored within EHR of health organisations
- Citizens and healthcare connected to regional EHRs
- Exchange of health data mediated by EHRs

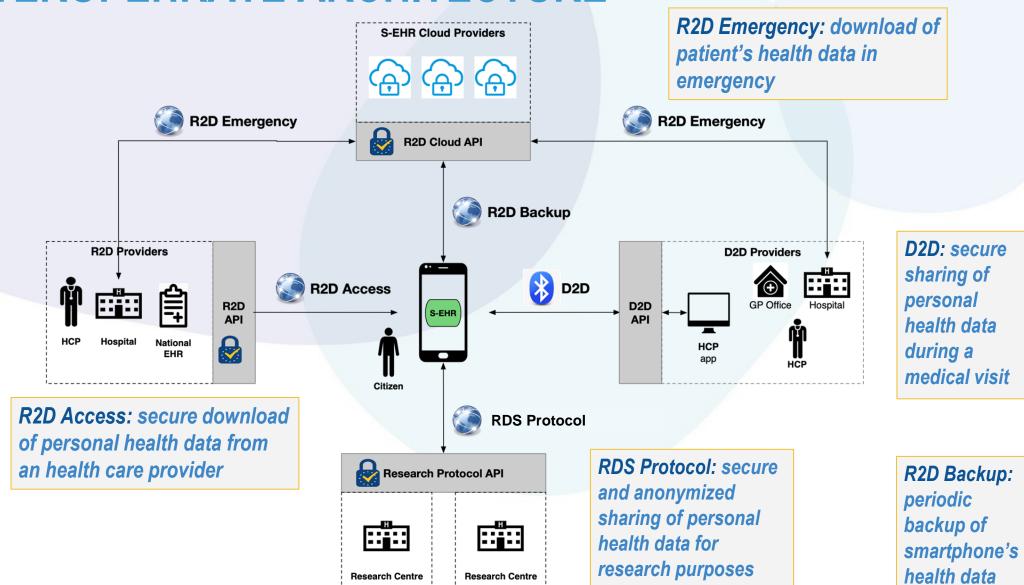


Citizen centred, decentral data exchange


- Health data also stored on Citizens' device/systems
- Citizens move with their health data
- Exchange of health data mediated by Citizens

InteropEHRate defines OPEN protocols for various scenarios

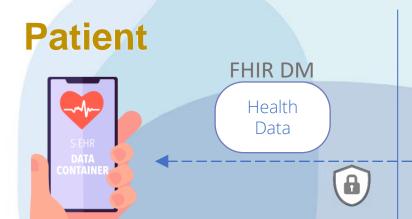
- **1. D2D (device to device) protocol** applied to **Medical visit abroad** Exchange of data with healthcare organisations without internet connection
- 2. R2D (Remote to Device) protocols Remote Access & Emergency Internet access to EHRs for citizens (R2D Access) and to optional S-EHR Cloud, for backup (R2D Backup) and for healthcare in emergency (R2D Emergency).
- 3. RDS (Research Data Sharing) protocol applied to Research studies Sharing of health data with research centres, without cloud storage



Leverage:

- Bluetooth
- HL7 FHIR
- CEN/ISO IPS
- elDAS / CEF elD

INTEROPEHRATE ARCHITECTURE


INTEROPEHRATE OPEN SPECIFICATION

- 1. FHIR profiles for EHR interoperability
- 2. S-EHR conformance levels constraints that S-EHRs and S-EHR Clouds must fulfil;
- 3. Device to Device (D2D) protocol exchange of health data between Citizen and *Healthcare Organisation*, on Bluetooth;
- 4. Remote to Device (R2D) protocols
 R2D Access: download by Citizens of health data from Healthcare organisations;
 R2D Backup: storage by Citizens of encrypted health data on S-EHR Cloud;
 R2D Emergency: access by Healthcare Organisations to S-EHR Cloud in emergency;
- 5. Research Data Sharing (RDS) Protocol exchange by Citizen of health data with Research Centres.

Leverage

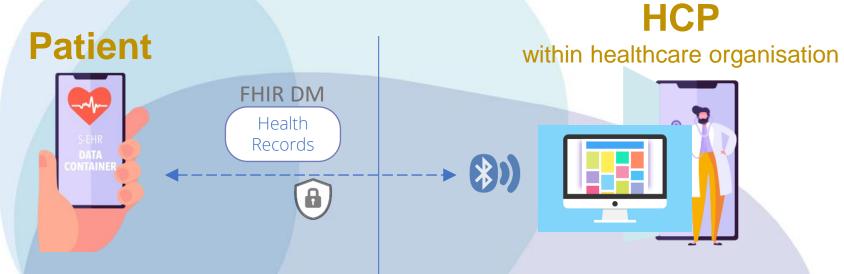
- Bluetooth
- HL7 FHIR
- CEN IPS
- eIDAS

Protocol: R2D Access

S-EHR

Any app under Citizen's control
able to store health data
on smart devices,
supporting InteropEHRate protocols
and compliant with the
InteropEHRate security
constraints

Healthcare Organisation



R2D Access Service

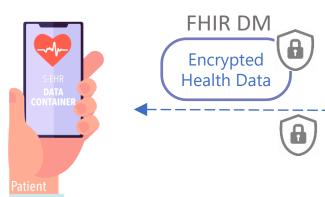
Any implementation of R2D
Access API: allowing
European citizens to download
their health data from their
healthcare providers using
their elDAS digital identity
and their preferred S-EHR app

Protocol: D2D

S-EHR

Any app under Citizen's control
able to store health data
on smart devices,
supporting InteropEHRate
protocols
and compliant with the
InteropEHRate security
constraints

HCP App


Any application used by HCPs, in hospital, GP's or private office, supporting the D2D protocol.

No other constraint imposed by InteropEHRate.

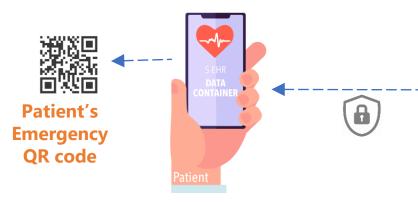
Protocol: R2D Backup

Patient

S-EHR

Any app, under Citizen's control
able to store health data on
smart devices,
adopting InteropEHRate protocols
and compliant with the
InteropEHRate security
constraints

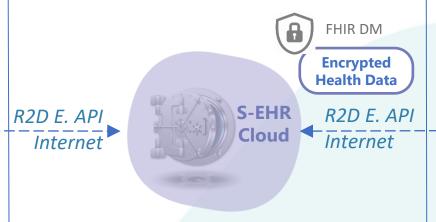
S-EHR Cloud Provider



S-EHR Cloud

Any cloud storage service, under
Citizen's control able to store
encrypted blob of data, adopting
the InteropEHRate protocols and
compliant with the InteropEHRate
security constraints

Emergency - Actors


Patient

S-EHR

Any app, under Citizen's control
able to store health data
on smart devices,
adopting InteropEHRate protocols
and compliant with the InteropEHRate
security constraints

S-EHR Cloud Provider

S-EHR Cloud

Any cloud storage service, under
Citizen's control able to store
encrypted blob of data, adopting
the InteropEHRate protocols and
compliant with the InteropEHRate
security constraints

HCP

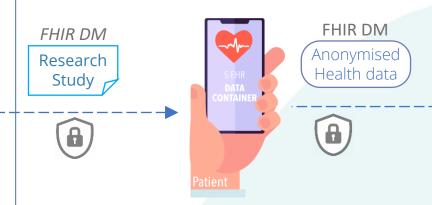
within Healthcare Organisation

HCP App

Any application used by HCPs, in hospital, GP's or private office, supporting the D2D protocol.

No other constraint imposed by InteropEHRate.

RESEARCH STUDY - ACTORS


Publisher

Central Node

Research Definition
documents (RDDs) are
published by the Research
Centres and are read by the
S-EHRs using the RDS protocol.

Patients

S-EHR

Any app, under Citizen's control
able to store health data
on smart devices,
supporting InteropEHRate
protocols
and compliant with the
InteropEHRate security
constraints

Research Centres

IRS

Any service exposed by a
Research Centre able to receive
the health data sent by the
Patients by means of the
InteropEHRate RDS protocol.

www.interopehrate.eu/developers/

- 1. Prototype of HCP App.
- 2. Reference implementation of S-EHR.
- 3. Reference implementation of R2D Access service.
- 4. Reference implementation of S-EHR Cloud.
- 5. Reference implementation of IRS & Central node.
- 6. Client-side and server-side libraries implementing the InteropEHRate protocols.
- 7. InteropEHRate Health Services (IHS): components for converting structured health data extracted from local EHRs to the FHIR data format expected by the InteropEHRate protocols.
- 8. InteropEHRate Health Tools (IHT): tools for managing healthcare knowledge. They allow to define mapping rules for conversion of health records exploited by the IHS for data conversion.